
6
th Virginia Tech High School Programming Contest

Dec 14, 2019

As a reminder, here are the key rules under which this contest is conducted:

• Teams may not communicate with another human during the contest about the problems.

• Teams may not use more than 1 computer.

This problem set contains a large number of problems (13) which target a variety of skill levels. You are

not expected to solve all of them, particularly if this is your first programming contest!

Enjoy!

6th Virginia Tech High School Programming Contest Dec 14, 2019 1

This page is intentionally left blank.

Problem A
Field Trip

Photo by Steve Harvey on Unsplash

You and your classmates are going on an exciting field trip to a downtown

museum. Because the museum is an hour away, three buses of identical

capacity and a van are dispatched as a means of transportation to the

museum and back. The buses will first start loading only students, and

once all students have been loaded then teachers will begin to fill in the

remaining spots on the buses. Any remaining teachers will ride on the

van. To make the bus ride more exciting, all the students are hoping for

a “teacher free bus ride”! A teacher free bus ride is when none of the

teachers are on a bus.

Students are grouped in n class sections of different sizes. Each class

section is assigned a number from 1 to n. All students in one class section must ride on the same bus. The

buses will board class sections in increasing order by number. In other words, the first bus will load class

numbers 1 to i, the second bus will load class numbers i+ 1 to j, and the third bus will load class numbers

j + 1 to n.

Given the sizes of each of the class sections, determine if it is possible to load students onto 3 identical buses

and end up with a “teacher free bus ride!”

Input

The first line of input contains one integer N , the number of class sections (3 ≤ N ≤ 1, 000, 000). The

second line of input contains N integers, the ith integer represents the size of class section number i. Class

section sizes can range from [1, 10 000].

Output

If it is possible to load the students onto three identical buses in the above-described fashion and have a

teacher free bus ride, then output two integers i and j where i is the number of the class section which is to

be loaded last into the first bus, and j is the class section which is to be loaded last into the second bus. We

can assume the third bus will load class sections j + 1 to n.

If it is not possible, print “-1”.

Sample Input 1 Sample Output 1

3

3 3 3

1 2

Sample Input 2 Sample Output 2

3

9 10 11

-1

6th Virginia Tech High School Programming Contest Dec 14, 2019 Problem A: Field Trip 3

Sample Input 3 Sample Output 3

9

1 2 3 1 2 3 1 2 3

3 6

Sample Input 4 Sample Output 4

9

1 2 3 1 2 3 1 2 10

-1

6th Virginia Tech High School Programming Contest Dec 14, 2019 Problem A: Field Trip 4

Problem B
Escape Wall Maria

Source: WikiMedia (fair use)

Wall Maria has been broken! Eren must evacuate as soon as possible

from his house. He must find the fastest route to escape within Wall

Maria before the titans rush in. Wall Maria is represented as a N × M

grid in which Eren can move horizontally or vertically.

There are burning houses and buildings which prevent Eren from passing

through them. The burning houses and buildings are represented as ‘1’.

Unburned or safe areas are represented as ‘0’. There are some areas

which can be entered but only from a specific direction. These areas can

be represented by either ‘U’, ‘D’, ‘L’, or ‘R’. For example, if there is an

‘R’ that means that area can only be entered from the right neighboring

tile within Wall Maria’s grid. Similarly, ‘U’ tiles can only be entered from

above, ‘D’ tiles can only be entered from below, and ‘L’ tiles can only be

entered from the left.

Eren knows the time t at which the titans will rush in. It takes 1 unit of

time to traverse 1 zone (which corresponds to 1 tile in the grid). Once he

reaches any border of Wall Maria he is safe.

Eren’s starting position is represented by the letter ‘S’. If Eren escapes at

or before time t, he is safe. Given his position within Wall Maria determine if it is possible to escape. If it is

possible determine the number of zones that must be traversed to lead to the quickest escape.

Input

The input consists of a single test case. The first line contains three integers t (1 ≤ t ≤ 200) , N (1 ≤ N ≤

100) and M (1 ≤ M ≤ 100). The rest of N lines will be Wall Maria’s grid containing characters ‘1‘, ‘0‘,

‘S‘, ‘U‘, ‘D‘, ‘L‘, or ‘R‘. There is exactly one ‘S‘ in the input.

Output

If it is possible to escape Wall Maria, output the minimum number of zones that must be traversed to escape.

If it is not possible to escape, print “NOT POSSIBLE”!

Sample Input 1 Sample Output 1

2 4 4

1111

1S01

1011

0U11

2

6th Virginia Tech High School Programming Contest Dec 14, 2019 Problem B: Escape Wall Maria 5

Sample Input 2 Sample Output 2

2 4 4

1111

1S01

1011

0L11

NOT POSSIBLE

Sample Input 3 Sample Output 3

1 4 4

1S01

1001

1011

0U11

0

6th Virginia Tech High School Programming Contest Dec 14, 2019 Problem B: Escape Wall Maria 6

Problem C
Spelling Bee

An example of the Daily NY Times Spelling Bee Puzzle

The New York Times publishes a daily puzzle called the “Spelling Bee.”

In this puzzle, 7 letters are shown in a hexagonal arrangement of 6 letters

around a center letter. The task is to come up with as many words as

possible that

• contain only letters that are displayed in the hexagon,

• are at least of length 4, and

• contain the center letter.

A letter may be used more than once, and not all letters need to be used.

After playing for a while, you get stuck, but then you remind yourself that

the Linux distribution on your computer comes with a machine-readable

file of 102 305 dictionary words in /usr/share/dict/words!

You decide that even if you can’t excel at the Spelling Bee you can still

excel at programming, so you decide to write a program that finds all

solutions to a Spelling Bee puzzle from your dictionary.

Input

The input consists of a single test case, which starts with a line with 7
distinct lowercase English letters. The first of these letters is the center letter. The next line contains an

integer n (1 ≤ n ≤ 102 305), the size of the dictionary. This line is followed by n lines, each containing a

dictionary word of l lowercase English letters (1 ≤ l ≤ 24).

Output

Output the word list matching the Spelling Bee puzzle in the order in which they appear in the dictionary.

You are guaranteed that at least one dictionary entry will match.

6th Virginia Tech High School Programming Contest Dec 14, 2019 Problem C: Spelling Bee 7

Sample Input 1 Sample Output 1

drulyag

27

dryad

duly

spelling

multiplexed

janna

lard

dryly

the

instances

gradual

gradually

dual

inimically

off

dullard

grad

equipage

gladly

mauritania

drug

a

drag

pickering

yard

daddy

on

lallygag

dryad

duly

lard

dryly

gradual

gradually

dual

dullard

grad

gladly

drug

drag

yard

daddy

6th Virginia Tech High School Programming Contest Dec 14, 2019 Problem C: Spelling Bee 8

Problem D
I.O.U.

Photo by Sharon McCutcheon on Unsplash

You are developing a new app intended to simplify expense-sharing

among groups of friends. This app will allow them to keep track of who

encountered an expense and how it should be shared with others through

the form of I.O.U.s. For instance, if Alice pays for a meal shared with

Bob and Carol, and Bob’s and Carol’s share were $5 and $10, respec-

tively, then Bob would issue an I.O.U. over $5 to Alice and Carol would

issue an I.O.U. over $10 to Alice.

Your app will maintain a ledger of who owes whom. Note that cycles can

occur: For instance, if Bob initially owes Alice $10 and later pays a $5 expense on behalf of Alice, Alice

would issue an I.O.U. over $5 to Bob. This I.O.U. would then cancel out, or reduce, the I.O.U. Alice holds

from Bob from $10 to $5. It’s also possible for cycles to involve more than 2 people.

Your app will be given a list of I.O.U.s issued and settle them as much as possible by considering all cycles

and reducing each debt in a cycle by the minimum amount of debt occurring in the cycle. After all cycles

are considered and canceled, your app should output who owes whom how much. If there are multiple ways

in which cancelation can occur, you may choose any of them as long as there are no cycles left at the end.

However, you may not introduce I.O.U.s between friends that never gave an I.O.U. to each other, e.g., if

Alice owes Bob money, and Bob owes the same amount to Carol, you cannot remove Bob from the picture

and declare that Alice now owes Carol.

Input

The input consists of a single test case. The first line contains two integers n and m (1 ≤ n ≤ 100, 0 ≤

m ≤ 10 000), where n denotes the number of friends and m denotes the number of I.O.U.s issued. Friends

are numbered 0 to n− 1. This is followed by m lines containing three integers a, b, c (0 ≤ a < n, 0 ≤ b <

n, a 6= b, 0 < c ≤ 1 000) denoting an I.O.U. given by friend a to friend b over c dollars. Any friend i holds

at most one I.O.U. from any friend j (i 6= j), but friend i may hold an I.O.U. from friend j at the same time

that friend j holds an I.O.U from i.

Output

First, output a single number p, denoting the number of I.O.U.s left after canceling all cycles. Then, on the

following p lines, output the I.O.U.s that are left in the same form in which they appear in the input (e.g.

using 3 integers a, b, c denoting that friend a owes friend b c dollars). Do not include any I.O.U.s fully

canceled, i.e., all the I.O.U.s you output must have c > 0.

6th Virginia Tech High School Programming Contest Dec 14, 2019 Problem D: I.O.U. 9

Sample Input 1 Sample Output 1

4 5

0 1 10

1 2 10

0 3 10

3 2 10

2 0 20

0

Sample Input 2 Sample Output 2

2 2

0 1 20

1 0 5

1

0 1 15

Sample Input 3 Sample Output 3

4 5

0 1 10

1 2 10

0 3 10

3 2 10

2 0 10

2

3 2 10

0 3 10

6th Virginia Tech High School Programming Contest Dec 14, 2019 Problem D: I.O.U. 10

Problem E
Musical Trees

Source: Pixabay

It’s Christmas time and JW’s 1-dimensional shop is selling Christmas

trees. However, the demand for trees is much higher than the number of

trees available. Hence, JW has come up with a special strategy to help

decide who gets what tree: a game of Musical Trees!

Musical Trees is much like the game Musical Chairs. There’s a set of trees

lined up in a straight (1-dimensional) line. At first, everyone starts by

wandering around the store while the music is playing. When the music

stops, everyone runs to the nearest tree (the tree the smallest distance

away) and whoever reaches a tree first gets to the claim that tree. Since people are lazy, they will only ever

try to run to the closest tree to them, and hence multiple people may try to get the same tree. Note this

means some trees may be unclaimed if they are closest to no one. Also, like in Musical Chairs, no tree can

be claimed by more than one person.

The music has just stopped in Musical Trees and as everyone is running to the closest tree, you want to

figure out the number of people who won’t get any tree.

Input

The first line consists the number of people n (1 ≤ n ≤ 100) and the number of trees m (1 ≤ m ≤ 100).

The next line contains n integers p1, p2, . . . , pn, the position of all the people when the music stops (1 ≤

pi ≤ 1 000). The last line contains m integers t1, t2, . . . , tm, the position of all the trees (1 ≤ ti ≤ 1 000).

No two people or two trees will have the same position. Some people may try to cheat though, and will

already be at the same position as a tree when the music stops. Note that if a person has more than one

closest tree to them, they will always go for the one with the smallest pi.

Output

Output the number of people who won’t get a tree.

Sample Input 1 Sample Output 1

2 3

1 4

2 4 5

0

Sample Input 2 Sample Output 2

3 2

1 5 10

4 6

1

6th Virginia Tech High School Programming Contest Dec 14, 2019 Problem E: Musical Trees 11

Sample Input 3 Sample Output 3

2 3

3 1

2 5 4

1

6th Virginia Tech High School Programming Contest Dec 14, 2019 Problem E: Musical Trees 12

Problem F
Archimedes

Archimedes’s Spiral, b =
1

2

Archimedes is the name of a new 2D video game, which is

very simple: the player hits start, at which point their avatar

moves along an Archimedean spiral starting from the origin.

When they hit a button, the avatar detaches from the spiral in

the direction it is currently moving. The goal is to hit a target.

The avatar’s path after it detaches must not intersect with any

part of the spiral.

To help study this game, you’re asked to write a program that

given the spiral’s angular velocity computes the point at which

the player would need to press the button to release the avatar

from the spiral in order to hit the target.

An Archimedean spiral is created when a point moves with

constant velocity along a line that rotates with constant angu-

lar velocity around the origin. When expressed in polar coordi-

nates (r, φ), an Archimedean spiral has a simple formulation:

r = b φ where r is the distance from the origin and φ is the an-

gle between the point, origin, and the unit vector (1, 0). b is a constant that determines the distance between

successive rings of the spiral.

Input

The input consists of a single line with 3 real numbers b, tx, and ty, denoting the parameter b (0.01 ≤ b ≤

10) of the spiral described by r = b φ and the x, y coordinates of the target T = (tx, ty), restricted by

−10 000 ≤ tx, ty ≤ 10 000. It is guaranteed that
√

t2x + t2y > 2πb, i.e., the avatar will stay on the spiral for

at least one full 360 degree turn. It is also guaranteed that the distance from point T to the closest point on

the spiral will be greater than 10−3. There may be up to 12 significant digits in b, and up to 3 digits after the

decimal point in tx and ty.

Output

Output the x, y coordinates of the point on the spiral where the avatar should leave the spiral, continue in

the direction it is moving, and hit the target without intersecting the spiral.

Your answer will be considered correct if the absolute or relative error of both x and y does not exceed 10−5.

Sample Input 1 Sample Output 1

0.5 -5.301 3.098 -1.26167861 3.88425357

Sample Input 2 Sample Output 2

0.5 8 8 9.21068947 2.56226688

6th Virginia Tech High School Programming Contest Dec 14, 2019 Problem F: Archimedes 13

Sample Input 3 Sample Output 3

1 8 8 6.22375968 -0.31921472

Sample Input 4 Sample Output 4

0.5 -8 8 -4.36385220 9.46891588

Sample Input 5 Sample Output 5

0.5 0 -8 -3.60855706 -3.61140618

6th Virginia Tech High School Programming Contest Dec 14, 2019 Problem F: Archimedes 14

Problem G
Perfect Skyline

Source: pixabay

Zara, an aspiring architect and urban planner, has drawn out what

she considers to be the perfect skyline. As Zara is still aspiring she

must use her young daughter, Pippa, to test out her designs. In order

to test out the designs Pippa must build them out of her building

blocks! The building blocks Pippa has have a uniform width and

depth, but come in different heights h. Zara’s description for Pippa

will consist of a list of buildings, each with a target height b.

Pippa must then use some (not necessarily all) of her blocks to stack

together such that the sum of the heights of the blocks in each stack corresponds to the height of the building

in the skyline. Since Pippa prefers building instead of solving puzzles she wants you to determine how she

must stack the blocks so that she must only do the stacking!

Input

The input consists of a single test case. The first line of this test case contains two integers N,S (1 ≤ N ≤ 15
and 1 ≤ S ≤ 15), where N is the number of blocks Pippa has and S is the number of buildings in the skyline

Zara made.

The next line contains N integers (1 ≤ hi ≤ 109) representing the heights of each block. The last line

contains S integers (1 ≤ bi ≤ 109) representing the height of each building.

Output

If it is possible for Pippa to build Zara’s skyline then output S lines. On each line output a single number si
representing the number of blocks needed to build building i where i corresponds to the ith building listed

in the input. This should be followed (on the same line) by si numbers j representing the blocks of the input

used in building i, where j represents the jth block appearing the input.

If no combination of the blocks can build the desired skyline then output -1.

Sample Input 1 Sample Output 1

4 3

3 3 2 1

3 3 3

1 1

1 2

2 3 4

Sample Input 2 Sample Output 2

4 2

3 3 2 2

6 3

-1

6th Virginia Tech High School Programming Contest Dec 14, 2019 Problem G: Perfect Skyline 15

Sample Input 3 Sample Output 3

7 3

5 4 3 6 1 2 2

4 11 4

1 2

2 1 4

2 3 5

6th Virginia Tech High School Programming Contest Dec 14, 2019 Problem G: Perfect Skyline 16

Problem H
Annoyed Coworkers

A picture of you, not working. Source: XKCD 303

It’s another day in the office, and you’re a mastermind of not doing

any work yourself. Instead, you’ll go to your coworkers for “help,”

but secretly have them do all the work.

You’ve determined that the more one of your coworkers helps you,

the more annoyed they become. You’ve also been able to determine

how much more annoyed a coworker gets everytime you ask them

for help. At the beginning of the day, a coworker is initially a an-

noyed at you. That’s their annoyance level. Everytime you ask them

for help though, they become d more annoyed at you – their annoy-

ance level a increases by a constant amount d so that a = a+ d.

You want to complete a project of h tasks solely with “help” from

your coworkers, but you need to be careful not to annoy any of them

too much.

What’s the best you can do?

Input

The first line contains 2 integers h and c, where h (1 ≤ h ≤ 100 000) is the number of times you have to

ask for help to complete the project, and c (1 ≤ c ≤ 100 000) denotes the number of coworkers you have.

Each of the following c lines contains two positive integers a and d, representing a coworker whose initial

annoyance level is a and who is getting more annoyed at you by an increase of d every time you ask them

for help (1 ≤ a, d ≤ 109).

Output

Output a single number, which is the maximum annoyance level any coworker has at you provided you

use an optimal strategy to minimize this level. (In other words, of all possible strategies, choose one that

minimizes the annoyance level of the worker or workers who are most annoyed at you at the end.)

Sample Input 1 Explanation

You have 4 coworkers and you need to ask for help 4 times. Initially, their annoyance levels are a1 = 1, a2 =
2, a3 = 3, a4 = 4, the increases are d1 = 2, d2 = 3, d3 = 4, d4 = 5. One optimal solution is to ask for help

twice from coworker 1, once from coworker 2, and once from coworker 3, in which case the final annoyance

levels are: a1 = 1 + 2 × 2 = 5, a2 = 2 + 3 = 5, a3 = 3 + 4 = 7, a4 = 4. The coworker that is most

annoyed at you is coworker 3, whose annoyance level at you is 7. Or, you could ask coworker 1 for help 3
times and coworker 2 once, leaving you with a1 = 1 + 3 × 2 = 7, a2 = 2 + 3 = 5, a3 = 3, a4 = 4. Both

strategies yield the same minimal maximum amount.

6th Virginia Tech High School Programming Contest Dec 14, 2019 Problem H: Annoyed Coworkers 17

Sample Input 1 Sample Output 1

4 4

1 2

2 3

3 4

4 5

7

Sample Input 2 Sample Output 2

3 2

1 1000

1000 1

1002

Sample Input 3 Sample Output 3

5 2

1 1

2 2

5

6th Virginia Tech High School Programming Contest Dec 14, 2019 Problem H: Annoyed Coworkers 18

Problem I
Reconstructing Tape Art

Source: pixabay

Raelynn is trying to learn the newest craze in modern art: Tape Art!

This wonderful new type of art is created by taking a wooden plank

and pieces of tape of different colors. Each artwork is constructed

by taking multiple pieces of tape and placing them on the plank. For

each color that appears in the artwork, only a single piece of tape is

used. Tapes can be placed on top of each other in which case the

tape placed last obscures already placed pieces of tape with which

it overlaps.

Raelynn has decided the best way to learn is by copying Sheila, the

world famed tape artist. Unfortunately those pieces of art are under

lock and key and Raelynn can see only pictures of these marvels.

Since Raelynn is having trouble reverse engineering the artwork from the picture, she has hired you to

create a set of instructions with which she can copy the art.

Since Raelynn is spoiled by the ease of IKEA catalogs she requires instructions to be given in the following

format: there should only be one instruction per color of tape and instructions should be given in the order

they should be executed. Each instruction must consist of three numbers: l r c where [l, r] represents the

inclusive range on which the tape should be placed and c represents the color of the tape piece. Planks are

divided into n 1-inch sections numbered 1 through n.

Input

The input consists of a single test case. The first line of this test case contains one integer n (1 ≤ n ≤ 105),

where n is the length of the tape art in inches. The next line contains n integers ci (1 ≤ ci ≤ n) representing

the color of one inch of the plank.

Output

Output any set of instructions that, when executed, will result in the tape art given by the input. Output the

string “IMPOSSIBLE” if the piece of tape art cannot be reconstructed using only one piece of each color

(Sheila must have broken the rules to make it or this piece is a forgery).

Sample Input 1 Sample Output 1

6

1 2 3 3 2 1

3

1 6 1

2 5 2

3 4 3

Sample Input 2 Sample Output 2

4

1 2 1 2

IMPOSSIBLE

6th Virginia Tech High School Programming Contest Dec 14, 2019 Problem I: Reconstructing Tape Art19

Sample Input 3 Sample Output 3

10

3 3 3 5 4 2 4 4 5 1

5

4 9 5

5 8 4

10 10 1

6 6 2

1 3 3

6th Virginia Tech High School Programming Contest Dec 14, 2019 Problem I: Reconstructing Tape Art20

Problem J
Jack The Lumberjack

Source: Conifer Forest by Pexels

Jack the Lumberjack used to love chopping down trees. Jack is getting

older and is becoming tired of this activity he used to love. He thinks of

an idea, ‘The Big One’ and fantasizes about going out into the forest one

last time to harvest as many trees as possible.

Jack calls the forest administrator for his local evergreen forest. The for-

est administrator tells him about how the population changes for each

species of tree. For each species k, Sk trees are planted in year Bk. For

the next Yk years, the population increases by Ik per year. After Yk years, it will decrease by the same

amount Ik per year, until possibly dying out.

Armed with this information, Jack wants to figure out the maximum amount of trees that could be harvested

at once from now until the future. If he is no longer around to do it, his descendants will be!

Assume all populations change instantly and at the same time, once per year. Jack would assess each

population’s size after the yearly change occurred.

Input

The input contains a single test case. The first line contains an integer N (1 ≤ N ≤ 1 000) representing the

number of tree species in the forest.

Each of the following N lines represents a single tree species population. Each of these population lines

contains 4 integer numbers Y I S B (0 ≤ Y ≤ 1 000 000, 0 ≤ I ≤ 1 000, 0 ≤ S ≤ 1 000 000, 0 ≤

B ≤ 1 000 000). where S is the starting population size, B the year in which the population is planted, Y

the number of years during which the population increases each year by I before it decreases by I until it

(possibly) dies out.

Output

Print the maximum amount of trees that can be harvested in any single year.

Sample Input 1 Sample Output 1

1

10 10 0 5

100

Sample Input 2 Sample Output 2

3

5 10 0 4

10 10 10 1

5 5 0 0

145

6th Virginia Tech High School Programming Contest Dec 14, 2019 Problem J: Jack The Lumberjack 21

This page is intentionally left blank.

This page is intentionally left blank.

Sample Input 1 Sample Output 1

3 3

1 2 4

0 3 6

4 0 3

2

Sample Input 2 Sample Output 2

3 4

2 3 0 7

0 0 2 1

0 0 3 0

37

Sample Input 3 Sample Output 3

3 4

1 3 0 7

2 0 0 1

0 0 9 0

14

6th Virginia Tech High School Programming Contest Dec 14, 2019 Problem L: Counting Codes 26

Problem M
Broken Calculator

Source: Pixabay/accountant-accounting-adviser

Working on math homework late one night, you realized your calculator

is broken. When it performs “addition” it adds the two numbers entered,

then subtracts the result from the previous operation. When it performs

“subtraction” it subtracts the two numbers entered, then multiplies the re-

sult by the previous operation’s result. When it performs “multiplication”

it squares its answer after multiplying the two numbers entered. When it

performs “division” it divides the first number by 2 if it is even, otherwise

it adds 1 to the first number and divides it by 2.

You also notice that when the calculator is turned on the previous operation’s result is set to 1. You realize

that doing math homework this way makes it more fun and want to write a program to perform calculations

like your broken calculator.

You spoke to your teacher about your broken calculator and they gave you the guarantee that even with this

weird behavior your calculator will never have to compute numbers larger than one quintillion (1018) on

your upcoming homework assignments.

Input

The input will begin with an integer n (1 ≤ n ≤ 1 000), the number of commands you want to run on

your calculator. Following the first line, each line will have an integer number a, an operator op, and a

number b, separated by a single space, which denote the first operand, the operation, and the second operand,

respectively. The operator will be one of +, -, *, or /. The operands will be in the range 0 ≤ a, b ≤ 100 000.

Output

Print the answer the calculator will show after running the command on each line, assuming it is turned on

before the first line is entered and stays on for all subsequent lines of input.

Sample Input 1 Sample Output 1

5

4 * 5

2 + 5

3 - 1

20 / 3

13 / 24

400

-393

-786

10

7

6th Virginia Tech High School Programming Contest Dec 14, 2019 Problem M: Broken Calculator 27

This page is intentionally left blank.

